Gmm estimator
rex.gmm_estimator.GMMEstimator
¤
__init__(data: jax.typing.ArrayLike, name: str = 'GMM', threshold: float = 1e-07, verbose: bool = True)
¤
Gaussian Mixture Model Estimator.
Parameters:
-
data
(ArrayLike
) –1D array of delay data.
-
name
(str
, default:'GMM'
) –Name of the model.
-
threshold
(float
, default:1e-07
) –Threshold for determining if the data is deterministic.
-
verbose
(bool
, default:True
) –Whether to print progress.
fit(num_steps: int = 100, num_components: int = 2, step_size: float = 0.05, seed: int = 0)
¤
Fit the model to the data.
Parameters:
-
num_steps
(int
, default:100
) –Number of steps to train the model.
-
num_components
(int
, default:2
) –Number of components in the mixture model.
-
step_size
(float
, default:0.05
) –Step size for the optimizer.
-
seed
(int
, default:0
) –Random seed.
get_dist(percentile: float = 0.99) -> base.StaticDist
¤
Get the distribution.
Parameters:
-
percentile
(float
, default:0.99
) –A percentile to prune the number of components that do not contribute much.
Returns:
-
StaticDist
–base.StaticDist: The distribution object.
plot_hist(ax: plt.Axes = None, edgecolor: str = None, facecolor: str = None, bins: int = 100, xmin: float = None, xmax: float = None, num_points: int = 1000, plot_dist: bool = True) -> plt.Axes
¤
Plot the histogram of the data and the fitted distribution.
Parameters:
-
ax
(Axes
, default:None
) –Axes to plot on.
-
edgecolor
(str
, default:None
) –Edge color of the histogram.
-
facecolor
(str
, default:None
) –Face color of the histogram.
-
bins
(int
, default:100
) –Number of bins for the histogram.
-
xmin
(float
, default:None
) –Minimum x value for the histogram. Can be used to avoid outliers.
-
xmax
(float
, default:None
) –Maximum x value for the histogram. Can be used to avoid outliers.
-
num_points
(int
, default:1000
) –Number of points to plot the distribution.
-
plot_dist
(bool
, default:True
) –Whether to plot the fitted distribution.
Returns:
-
Axes
–The axes with the plot.
plot_loss(ax: plt.Axes = None, edgecolor: str = None) -> plt.Axes
¤
Plot the loss function.
Parameters:
-
ax
(Axes
, default:None
) –Axes to plot on.
-
edgecolor
(str
, default:None
) –Edge color of the plot.
Returns:
-
Axes
–plt.Axes: The axes with the plot.
plot_normalized_weights(ax: plt.Axes = None, edgecolor: str = None) -> plt.Axes
¤
Plot the normalized weights.
Parameters:
-
ax
(Axes
, default:None
) –Axes to plot on.
-
edgecolor
(str
, default:None
) –Edge color of the plot.
Returns:
-
Axes
–The axes with the plot.
animate_training(num_frames: int = 30, fig: plt.Figure = None, ax: plt.Axes = None, edgecolor: str = None, facecolor: str = None, bins: int = 40, xmin: float = None, xmax: float = None, num_points: int = 1000) -> matplotlib.animation.FuncAnimation
¤
Animate the training process.
Parameters:
-
num_frames
(int
, default:30
) –Number of frames to animate.
-
fig
(Figure
, default:None
) –Figure to plot on.
-
ax
(Axes
, default:None
) –Axes to plot on.
-
edgecolor
(str
, default:None
) –Edge color of the histogram.
-
facecolor
(str
, default:None
) –Face color of the histogram.
-
bins
(int
, default:40
) –Number of bins for the histogram.
-
xmin
(float
, default:None
) –Minimum x value for the histogram. Can be used to avoid outliers.
-
xmax
(float
, default:None
) –Maximum x value for the histogram. Can be used to avoid outliers.
-
num_points
(int
, default:1000
) –Number of points to plot the distribution.
Returns:
-
FuncAnimation
–matplotlib.animation.FuncAnimation: The animation object.